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Abstract
After a brief review of previous work, two exactly solvable two-dimensional
models of a finite Coulomb fluid in a disc are studied. The charge correlation
function near the boundary circle is computed. When the disc radius is large
compared to the bulk correlation length, a correlation function of the surface
charge density can be defined. It is checked, for the solvable models, that this
correlation function does have the generic long-range behaviour, decaying as
the inverse square distance, predicted by macroscopic electrostatics. In the case
of a two-component plasma (a Coulomb fluid made of two species of particles
of opposite charges), the density correlation function on the boundary circle
itself is conjectured to have a temperature-independent behaviour, decaying as
the −4 power of the distance.

1. Introduction

Although Jean-Pierre and I have coauthored only one paper [1], some 30 years ago, we share
a long-standing interest in Coulomb fluids. Here is a contribution to this thriving domain
of research. It consists of a far-from-exhaustive ‘minireview’ of previous work on exactly
solvable two-dimensional models of Coulomb fluids, followed by an original part concerning
a finite Coulomb fluid in a disc.

1.1. A brief review

The classical (i.e. non-quantum) statistical mechanics of some two-dimensional models of
Coulomb fluids is exactly solvable. These models have an intrinsic interest: this is the only
case of solvable models for a continuous (i.e. not on a lattice) fluid, in more than one dimension.
Furthermore, these models can be used as a testing ground for a variety of generic properties
of Coulomb fluids. The two-dimensional Coulomb interaction is logarithmic: the energy
1 Unité Mixte de Recherche no 8627-CNRS.
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of interaction between two unit charges at a distance r from each other is ln(L/r), where
L is an arbitrary length which only fixes the zero of energy. Indeed, this interaction is the
two-dimensional solution of the Poisson equation

� ln
L

r
= −2πδ(r). (1.1)

Using the two-dimensional Coulomb interaction in these two-dimensional models ensures that
some generic properties of three-dimensional Coulomb fluids are preserved, although the two-
dimensional models also have specific properties. Of course, these logarithmic models do not
describe ‘real’ charged particles, such as electrons, confined in a plane, which nevertheless
interact through the three-dimensional Coulomb potential 1/r .

Two models are of special interest: the one-component plasma (OCP), or jellium, is made
of one species of particles of charge q , embedded in a uniformly charged background of the
opposite sign. The two-component plasma (TCP), or Coulomb gas, is made of two species of
particles, with opposite charges ±q . At the inverse temperature β, the dimensionless coupling
constant can be chosen as � = βq2. It has the remarkable property of being independent of
the density, and this results in a simple equation of state [2, 3] for both models:

βp =
(

1 − �

4

)
n (1.2)

where p is the pressure and n is the density.
In the case of the TCP, the model (with pure Coulomb interactions) becomes unstable

against the collapse of positive–negative pairs for � � 2, and the equation of state (1.2) is
valid only for � � 2. If some short-range repulsion (for instance hard cores of diameter a) is
introduced, the collapse at � = 2 is suppressed and the temperature can be further lowered.
For small values of the dimensionless density na2, the famous Kosterlitz–Thouless phase
transition [4–6] of infinite order occurs, between a conducting high-temperature phase and a
dielectric low-temperature phase, at a density-dependent temperature with a corresponding �

close to 4.
In the case of the OCP, the equation of state (1.2) is valid at any �. However, for � > 4,

the pressure becomes negative (in three dimensions also, the pressure becomes negative for a
large enough value of the coupling constant). This is a pathology of the OCP, related to the
presence of a rigid background without dynamics instead of mobile particles with a kinetic
energy. Nevertheless, in spite of this negative pressure, the OCP does not collapse if one
assumes that the background is held rigid by some constraint.

Finite-size two-dimensional Coulomb fluids exhibit universal properties [7] related to
conformal invariance. This will not be reviewed here.

For the special value � = 2, the OCP [8, 9] and TCP [10] are fully exactly solvable. The
thermodynamic functions and the correlation functions are obtainable.

For the OCP, it is convenient to define the Ursell function U as

U(r, r′) = n(2)(r, r′) − n2 (1.3)

where n is the one-body density and n(2)(r, r′) is the two-body density. At � = 2, in the
canonical ensemble, the OCP maps on a system of free fermions in a magnetic field and one
finds

U(r, r′) = −n2 exp(−πn|r − r′|2). (1.4)

This correlation function has a fast Gaussian decay on a length scale of the order of (πn)−1/2.
Several generic sum rules can be checked. The zeroth and second moments of U obey the
two Stillinger–Lovett sum rules [11] which express perfect screening of a charged particle of
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the fluid and perfect screening of an added infinitesimal test charge, respectively. The fourth
moment obeys the general expression derived, in terms of the compressibility, by Vieillefosse
and Hansen [12]:

n

(
π�

4

)2 ∫
U(r, r′)|r − r′|4 dr = −β

(
∂p

∂n

)
T

(1.5)

and the sixth moment obeys a recently derived expression [13] which seems to be specific to
the two-dimensional point-particle OCP:

n2

(
π�

2

)3 ∫
U(r, r′)|r − r′|6 dr = 3

4
(� − 6)(8 − 3�). (1.6)

For the TCP, the Ursell functions U depend on the species of the two particles which are
involved. They must be defined as

Uss ′(r, r′) = n(2)

ss ′ (r, r′) − nsns ′ (1.7)

where s, s′ = ±1 denote the signs of the particles, n+ = n− = n/2 are the one-body densities
of each species, n the total one-body density,and n(2)

ss ′ (r, r′) is the two-body density for particles
of species s and s′, respectively. At � = 2, in the grand canonical ensemble, the TCP maps
onto a system of free fermions. One control parameter is a properly rescaled fugacity m, which
has the dimension of an inverse length. Although the density diverges at � = 2, the Ursell
functions remain finite. They are

Uss(r, r′) = −
(

m2

2π

)2

[K0(m|r − r′|)]2 (1.8a)

Us −s(r, r′) =
(

m2

2π

)2

[K1(m|r − r′|)]2 (1.8b)

where K0 and K1 are modified Bessel functions, which have an exponential decay; the
correlation length is 1/(2m). The short-distance behaviours of these Ursell functions confirm
general predictions of Hansen and Viot [14]. The pair distribution function for particles of
opposite signs, dominated at short distances by the Boltzmann factor of the Coulomb potential,
should behave like |r − r′|−�; the |r − r′|−2 behaviour of Us −s fits with this form. However,
although the pair distribution function for particles of the same sign should behave like |r−r′|�
for � < 1, this repulsive behaviour has been predicted to be weakened into |r − r′|2−� for
1 < � < 2. because of screening by a third particle; the logarithmic behaviour of the Bessel
function K0 in Uss can be considered as a limiting case when � = 2.

The Ursell functions for the TCP can be combined into a charge correlation function

Uρ = 2q2(U++ − U−+) (1.9)

and a density correlation function

Un = 2(U++ + U−+). (1.10)

Several generic sum rules can be checked on these correlation functions. The zeroth and
second moment of the charge correlation function (1.9) obey the Stillinger–Lovett sum rules.
The zeroth moment of the density correlation function (1.10) obeys the usual compressibility
sum rule, while its second moment obeys a recently discovered sum rule [15, 16] which seems
to be specific to the two-dimensional point-particle TCP:∫

Un(r, r′)|r − r′|2 dr = 1

12π[1 − (�/4)2]
. (1.11)

Up to two years ago, there were exact results only at � = 2. Then a major breakthrough
occurred: Šamaj et al [17] succeeded in deriving the thermodynamic properties of the TCP
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over the whole range of stability of the model, � < 2. This was achieved by using a mapping
onto the sine–Gordon field theory and results known for the latter. The surface tension along a
wall could also be obtained in the cases of an ideal conductor wall [18] and of an ideal dielectric
wall [19]. However, although results have been obtained for the asymptotic behaviour of the
correlation functions [7, 20], there are no simple expressions for these correlation functions.
In the following, we shall consider only the simple case � = 2, and the weak-coupling (high-
temperature) limit � → 0.

At � = 2, many exact results are available for the OCP and the TCP in a variety of
geometries with walls or on a curved surface. These results will not be described in detail
here. We only review the case of a Coulomb fluid living in a half-plane bounded by a rectilinear
hard wall. This hard wall can be taken as the y-axis, and the fluid is supposed to occupy the
half-plane x � 0. The position r of a particle is defined by its Cartesian coordinates x and y.
Now, in the definitions of the Ursell functions, it must be understood that the one-body densities
are functions of the distance to the wall, i.e. in (1.3) n2 must be replaced by n(x)n(x ′), and
in (1.7) nsns ′ must be replaced by ns(x)ns ′(x ′). The Ursell functions depend on x , x ′, and
|y − y ′|.

For this half-plane geometry, a generic behaviour of the charge correlations near the
wall [21–23] results from the assumption that the fluid is a conductor obeying the laws of
macroscopic electrostatics. The charge correlation function along the wall now is long ranged,
with only an algebraic asymptotic decay

Uρ(x, x ′, |y − y ′|) ∼ f (x, x ′)
(y − y ′)2

(1.12)

when |y − y ′| is large compared to the microscopic scale (the bulk correlation length). f (x, x ′)
is a function which is localized near the wall (it has a fast decay as x or x ′ increase beyond the
microscopic scale), and f obeys the sum rule

β

∫ ∞

0
dx

∫ ∞

0
dx ′ f (x, x ′) = − 1

2π2
. (1.13)

Equations (1.12) and (1.13) can be re-expressed by writing that there is a surface charge density
σ(y) with a correlation function obeying

β〈σ(y)σ (y ′)〉 = − 1

2π2(y − y ′)2
. (1.14)

At � = 2 and in the limit � → 0, along a hard wall, the charge correlation functions q2U of
the OCP [21] and Uρ of the TCP [7] do have an asymptotic behaviour in agreement with (1.14).

For this half-plane geometry, it has been observed [7] that the density correlation function
of the TCP near the wall is also long ranged and that Un(x = 0, x ′ = 0, |y − y ′|) has the same
asymptotic behaviour at � = 2 and as � → 0:

Un(x = 0, x ′ = 0, |y − y ′|) ∼ 1

2π2(y − y ′)4
. (1.15)

It is tempting to conjecture that (1.15) is valid at any temperature.

1.2. The disc geometry

We now come to the original part of the present paper. In the above, it was always found that
the laws of macroscopic electrostatics about charge correlations were satisfied by the exactly
solvable two-dimensional models, when the lengths under consideration are large compared
to the microscopic scale. Recently, however, a counter-example was found [24]. A short-
circuited circular capacitor was considered: a two-dimensional Coulomb fluid fills a disc of
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radius R1 and the infinite region outside a concentric circle of larger radius R2, while the
annulus between R1 and R2 is empty, and the two filled regions are allowed to freely exchange
charged particles. This geometry is exactly solvable at � = 2 for both the OCP and the
TCP. The charge Q on the inner disc fluctuates. Even for macroscopic values of R1, R2, with
R2/R1 > 1, it was found that the variance 〈Q2〉 − 〈Q〉2 differs from the value predicted by
using linear response theory and macroscopic electrostatics:

β(〈Q2〉 − 〈Q〉2) = 1

ln R2
R1

. (1.16)

This, at first sight surprising, disagreement can be explained, on further consideration, when
it is noted that the fluctuations (1.16) involve only a small number of particles, because, at
� = 2, (〈Q2〉 − 〈Q〉2)/q2 is of order unity. Although, for one disc alone, i.e. in the limit
R2 → ∞, no charge fluctuations are found for the solvable models (except in one very special
case), in agreement with the limit R2 → ∞ in (1.16), the failure of (1.16) for R2/R1 finite
casts a reasonable doubt on the predictions of macroscopic electrostatics in the disc geometry.
The subject of the present paper is to investigate the surface charge correlations of the OCP
and TCP in a disc, at � = 2. It will be shown that macroscopic electrostatics does hold for the
present problem.

Thus, we consider a Coulomb fluid in a disc of radius R, bounded by a hard wall. It is
convenient to put the origin at the centre of the disc, and to use polar coordinates (r, ϕ). The
disc may be either insulated, with for simplicity a vanishing total charge, or grounded. In
both cases, from linear response theory and macroscopic electrostatics [23], one finds that the
correlation function of the surface charge density σ(ϕ) is given by

β〈σ(ϕ)σ(ϕ′)〉 = − 1

2π2[2R sin(θ/2)]2
(1.17)

where θ = ϕ − ϕ′ is the angular distance between the two points. Actually, the correlation
function in (1.17) is defined from the microscopic charge Ursell function Uρ(r, r ′, |θ |), which,
for R and R|θ | large compared to the microscopic scale, is localized near the boundary circle
(it has a fast decay as x = R − r or x ′ = R − r ′ increase beyond the microscopic scale). The
relation is

〈σ(ϕ)σ(ϕ′)〉 =
∫ ∞

0
dx

∫ ∞

0
dx ′ Uρ(r, r ′, |θ |). (1.18)

Also, possible oscillations as a function of θ on a microscopic scale are washed out in the
definition of the surface charge density. Equation (1.17) is a generalization of the rectilinear
wall case (1.14), which is retrieved from (1.17) in the limit R → ∞, θ → 0, at a fixed value
of Rθ which becomes y − y ′.

In section 2, it will be shown that (1.17) is obeyed in the case of the OCP at � = 2.
In section 3, it will be shown that (1.17) is obeyed in the case of the TCP at � = 2. A
generalization to the disc geometry of the density correlation function on the wall for the
TCP (1.15) will also be presented. The high-temperature limit � → 0 will be briefly reviewed
in section 4.

2. One-component plasma at Γ = 2 in a disc

The canonical ensemble is used. There are N particles of charge q in a disc of radius R.
Thus, the average density is n = N/(π R2). A uniformly charged background ensures that the
total charge vanishes. It is convenient to choose the unit of length as R/

√
N . In these units,



9126 B Jancovici

πn = 1. The general formalism [21] for the OCP in a disc at � = 2 expresses the density
Ursell function U(r, r ′, |θ |) = n(2)(r, r ′, |θ |) − n(r)n(r ′) in terms of an auxiliary function

K (w) =
N−1∑
l=0

wl

γ (l + 1, N)
, (2.1)

where w = rr ′ exp(iθ) and γ (l + 1, N) is an incomplete gamma function [25], as

U(r, r ′, |θ |) = −n2 exp(−r2 − r ′2)|K (w)|2. (2.2)

We are interested in the behaviour of (2.2) when r and r ′ are close to R, and Rθ is much larger
than the microscopic scale n−1/2, i.e. for N large and a non-zero value of θ .

A related problem has been previously solved by Choquard et al [26]. They considered
the simpler case when the confining circular background extends well beyond the circular
blob formed by the particles. Then, in (2.1), the incomplete gamma function is replaced
by the complete one �(l + 1) = l! and the sum itself can be expressed in terms of another
incomplete gamma function, from which the surface behaviour of U could be obtained (the
surface behaviour of U has also been obtained [27] in the case of an elliptical blob of particles).
In our present case, since for r and r ′ close to R the sum in (2.1) can be seen to be dominated
by values of l close to N , we use the asymptotic expression [25] γ (l + 1, l) ∼ (1/2)l!. Thus
our K is just twice that of Choquard et al. Although we have not been able to construct a
rigorous mathematical proof, the validity of this procedure has been checked on Mathematica,
in the cases r = r ′ = R, θ = π/2 or π , by numerical evaluations of a sum equivalent to (2.1).

Following Choquard et al, we can now express our K as [25]

K (w) = 2
N−1∑
l=0

wl

l!
= 2

(N − 1)!
exp(w)�(N, w) (2.3)

where �(N, w) is the incomplete gamma function

�(N, w) =
∫ ∞

w

dt e−t t N−1. (2.4)

The asymptotic form of (2.4), in the present case of |w − N | � √
N and N → ∞, can be

obtained by rewriting (2.4) as

�(N, w) =
∫ ∞

w

dt
t

N − 1 − t

d

dt
(t N−1e−t ) (2.5)

and integrating by parts, with the result

exp(w)

(N − 1)!
�(N, w) = wN

(N − 1)!(w − N + 1)

[
1 + O

(
1

N

)]
(2.6)

in agreement with an asymptotic expansion of Tricomi (see [25]). In the case of two particles
on a circle of radius R, since in our units R2 = N , w = N exp(iθ), and from (2.3) and (2.6)
one finds

e−N K (Neiθ ) ∼ 2e−N N N

N!

eiNθ

eiθ − 1
. (2.7)

Using Stirling’s formula for N! in (2.7) gives

e−N K (Neiθ ) ∼
(

2

π N

)1/2 eiNθ

eiθ − 1
. (2.8)

Using (2.8) in (2.2) and re-establishing an arbitrary unit of length such that πn is no longer 1,
gives the correlation function on the circle

U(R, R, θ) ∼ −n
2

π2

1

(2R sin θ
2 )2

. (2.9)
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In the case when the two particles are at small distances x and x ′ from the boundary, minor
modifications after (2.6) give, in the large-N limit,

U(r, r ′, θ) ∼ −n
2

π2

exp(−2πnx2 − 2πnx ′2)
(2R sin θ

2 )2
. (2.10)

Integrating Uρ = q2U with respect to x and x ′ does give a correlation function of the
surface charge density of the form (1.17) (here βq2 = 2), in agreement with macroscopic
electrostatics.

The case of a rectilinear hard wall [21] is retrieved from (2.10) by taking the limit R → ∞,
θ → 0, at a fixed value of Rθ which becomes y − y ′. Then, in agreement with (1.12),

Uρ(x, x ′, |y − y ′|) ∼ −q2n
exp(−2πnx2 − 2πnx ′2)

(y − y ′)2
(2.11)

and (1.14) is satisfied.
In the derivation of the present results, we have replaced γ (l + 1, N) by (1/2)l! without

rigorous mathematical justification. However, the validity of (2.9) and (2.10) is supported by
several checks. First, the correct result (2.11) was retrieved in the limiting case of a rectilinear
wall. Second, using the exact expression (2.1), Choquard et al [28] have shown without
approximations that, in the large-N limit,

− 1

2π R2

∫
dr dr′ |r − r′|2U(r, r′) = 1

π
(2.12)

and that the surface contribution to (2.12) is 1/(2π); this is in agreement with what is obtained
by using for U near the surface the expression (2.10).

3. Two-component plasma at Γ = 2 in a disc

The particles are confined by a hard wall in a disc of radius R. A grand canonical ensemble
restricted to neutral configurations is used. Both species of particles, of respective charges q
and −q , have the same rescaled fugacity m. The general formalism [10] expresses the Ursell
functions Uss ′(r, r ′, |θ |) in terms of Green functions Gss ′(r, r′) as

Uss ′(r, r ′, |θ |) = −ss′m2|Gss ′(r, r′)|2. (3.1)

Because of the symmetry between positive and negative particles, we only need G++ and G−+

which, for r, r ′ < R, are determined by

(m2 − �)G++(r, r′) = mδ(r − r′) (3.2)

and

G−+(r, r′) = −exp(iϕ)

m

(
∂

∂r
+

i

r

∂

∂ϕ

)
G++(r, r′). (3.3)

In infinite space the solution of (3.2) is [m/(2π)]K0(m|r − r′|). In a disc, it is appropriate to
use polar coordinates and to write the solution as an expansion of the form

G++(r, ϕ; r ′, ϕ′) = m

2π

∞∑
l=−∞

[Il(mr ′)Kl(mr)

+ al Il(mr ′)Il(mr)] exp[il(ϕ − ϕ′)] (r ′ < r < R) (3.4)

where the first term in the sum is the expansion of [m/(2π)]K0(m|r − r′|) and the second
term is a ‘reflected’ contribution due to the wall; Il and Kl are modified Bessel functions and
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al is a coefficient to be determined by the boundary conditions. Equation (3.3) gives

G−+(r, ϕ; r ′, ϕ′) = m

2π

∞∑
l=−∞

[Il(mr ′)Kl+1(mr)

− al Il(mr ′)Il+1(mr)] exp[i(l + 1)ϕ − ilϕ′] (r ′ < r < R). (3.5)

For r ′ < R, r > R, m must be replaced by 0 in (3.2), and, as functions of r, G++ depends only
on z = r exp(iϕ), G−+ depends only on z̄ = r exp(−iϕ), and they must vanish at infinity. At
r = R, G++ and G−+ must be continuous. These conditions impose that the l � 0 terms in
G++(R, ϕ; r ′, ϕ′) and the l < 0 terms in G−+(R, ϕ; r ′, ϕ′) vanish. Therefore, the coefficient
al in (3.4) and (3.5) is

al = − Kl(m R)

Il(m R)
if l � 0,

al = Kl+1(m R)

Il+1(m R)
if l < 0.

(3.6)

We are interested in the behaviours of (3.4) and (3.5) when the disc is much larger that the
bulk correlation length (m R � 1), θ = ϕ − ϕ′ has a fixed (non-zero) value, and r and r ′ are
close to R.

Let us start with the case where the two points are on the disc. In this limiting case, when
the Wronskian relation [25] Il(m R)Kl+1(m R) + Il+1(m R)Kl(m R) = 1/(m R) is taken into
account, and after l has been changed into −l, equations (3.4) and (3.6) give

G++(R, ϕ; R, ϕ′) = 1

2π R

∞∑
l=1

Il(m R)

Il−1(m R)
exp[−il(ϕ − ϕ′)] (3.7)

while, when that same Wronskian relation is used, equations (3.5) and (3.6) give

G−+(R, ϕ; R, ϕ′) = 1

2π R

∞∑
l=0

exp[i(1 + l)ϕ − ilϕ′)]. (3.8)

In the large-m R limit, using in (3.7) the large-argument asymptotic expansions of the Bessel
functions [29] gives, up to order 1/R2,

Il(m R)

Il−1(m R)
= 1 +

1 − 2l

2m R
+

3 − 8l + 4l2

8(m R)2
+ · · · . (3.9)

Although the sums over l which appear in (3.8), and in (3.7) when (3.9) is used, are not
convergent, they can be given a meaning in the sense of distributions; the obvious recipe is to
insert a convergence factor pl , with |p| < 1, in each term, and to take the limit p → 1 after
the summation. One finds, up to order 1/R3,

G++(R, ϕ; R, ϕ′) = 1

2π R

e−iθ

1 − e−iθ

[
1 − 1

2m R

1 + e−iθ

1 − e−iθ
+

1

8(m R)2

−1 + 6e−iθ + 3e−2iθ

(1 − e−iθ )2
+ · · ·

]

(3.10)

where θ = ϕ − ϕ′, and

G−+(R, ϕ; R, ϕ′) = eiϕ

2π R

1

1 − eiθ
. (3.11)

It might be noted that the expression (3.11) is exact, without any large-m R expansion. Finally,
using (3.10) or (3.11) in (3.1) gives

U++(R, R, |θ |) = − m2

4π2(2R sin θ
2 )2

+
1

4π2(2R sin θ
2 )4

+ · · · (3.12)
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up to order 1/R4, and

U−+(R, R, |θ |) = m2

4π2(2R sin θ
2 )2

. (3.13)

More generally, if the two points are at small distances x and x ′ from the boundary, using
the large-argument asymptotic expansions of the Bessel functions in (3.4) and (3.5) (where the
first term in the sum, which comes from the expansion of K0, gives a short-ranged contribution
which can be omitted) gives, when only the leading term is kept,

G++(R − x, ϕ; R − x ′, ϕ′) ∼ e−m(x+x′ )

2π R

e−iθ

1 − e−iθ
(3.14)

and

G−+(R − x, ϕ; R − x ′, ϕ′) ∼ e−m(x+x′ )+iϕ

2π R

1

1 − eiθ
. (3.15)

The Ursell functions become

U++(R − x, R − x ′, |θ |) ∼ − m2e−2m(x+x′ )

4π2(2R sin θ
2 )2

(3.16)

and

U−+(R − x, R − x ′, |θ |) ∼ m2e−2m(x+x′ )

4π2(2R sin θ
2 )2

. (3.17)

The charge correlation function is

Uρ(R − x, R − x ′, |θ |) = 2q2[U++(R − x, R − x ′, |θ |) − U−+(R − x, R − x ′, |θ |)]. (3.18)

Using (3.16) and (3.17) in (3.18) and integrating it over x and x ′ does give a correlation function
of the surface charge density of the form (1.17) (here βq2 = 2), in agreement with macroscopic
electrostatics.

The density correlation function on the wall is

Un(R, R, |θ |) = 2[U++(R, R, |θ |) + U−+(R, R, |θ |)]. (3.19)

In (3.19), the leading contribution to U++ is cancelled by U−+ and it is necessary to use the full
expansion (3.12), together with (3.13), for obtaining the leading term of Un as

Un(R, R, |θ |) ∼ 1

2π2(2R sin θ
2 )4

. (3.20)

Equation (3.20) is the generalization to the case of a circular wall of the rectilinear wall
result (1.15).

A mathematical justification of some of the heuristic steps used in the above derivations
is given in the appendix.

4. High-temperature limit Γ → 0 in a disc

For both the OCP and the TCP, the high-temperature limit � → 0 is described by the Debye–
Hückel theory. The case of a disc has already been investigated by Choquard et al [30]. They
have shown that, when x = R − r and x ′ = R − r ′ are small, the charge correlation function
is2

Uρ(r, r ′, |θ |) ∼ − q2ne−κ(x+x′)

π(2R sin θ
2 )2

(4.1)

2 Actually, Choquard et al have given, instead of (4.1), a more general expression involving the arbitrary length L in
the logarithmic potential ln(L/r). We have argued [24] that, in two dimensions, there should be no fluctuations of the
total charge on the disc, even in a grand canonical ensemble, and that this condition imposes that the limit L → ∞
should be taken. Then, the expression of Choquard et al reduces to (4.1).
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where κ = (2πβq2n)1/2 is the inverse Debye length. Integrating (4.1) over x and x ′ does
give a correlation function of the surface charge density of the form (1.17), in agreement with
macroscopic electrostatics.

In the case of the TCP, the density correlation function Un is also of interest. Since the
Debye–Hückel theory gives a vanishing result (the contributions from the Debye–Hückel Uss

and Us −s cancel each other), it is necessary to go beyond the Debye–Hückel theory and to take
into account the next term in the renormalized Mayer expansion [16, 20], which is proportional
to the square of the Debye–Hückel Uρ . One finds

Un(R − x, R − x ′, |θ |) ∼ e−2κ(x+x′)

2π2(2R sin θ
2 )4

. (4.2)

On the wall itself, equation (4.2) is the same as in the case (3.20) of � = 2.

5. Conclusions

Macroscopic electrostatics has been shown to be not applicable for describing the charge
fluctuations in a two-dimensional short-circuited circular capacitor: at � = 2, equation (1.16)
does not hold. This non-applicability of macroscopic electrostatics has been explained by the
smallness of the number of particles involved in the fluctuation.

The above result might cast some doubt about the validity of the expression (1.17) for
the correlation function of the surface charge density of a Coulomb fluid in a disc, since
macroscopic electrostatics has been used in the derivation. Therefore, we have checked this
correlation function on exactly solvable models, the OCP and TCP at � = 2. Equation (1.17)
had also been obtained in the Debye–Hückel theory [30], i.e. in the weak-coupling limit � → 0.
Thus, these calculations indicate that macroscopic electrostatics is valid for describing the
correlation function of the surface charge density. However, we have no general argument for
predicting a priori the validity of macroscopic electrostatics in this case.

Incidentally, the correlation function (1.17) can be formally written as a Fourier series

β〈σ(ϕ)σ(ϕ′)〉 = − 1

2π2[2R sin(θ/2)]2
= 1

2π2 R2

∞∑
l=1

l cos(lθ). (5.1)

This Fourier series has no l = 0 term—another indication that the total charge has no
fluctuations.

In the case of a TCP, the density correlation function on the wall has the same form (3.20)
at � = 2 and in the high-temperature limit � → 0. It is tempting to conjecture that this form
is valid at any temperature, at least in the range � � 2. A similar universality of (1.15) had
been conjectured [7] in the case of a rectilinear wall. Proving (or disproving) these conjectures
is an open problem.
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Appendix

In section 3, large-argument expansions of Bessel functions have been used, although these
expansions have been inserted into infinite series involving also large values of the index l.
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Furthermore, these series in l have been made to converge only through the introduction of an
ad hoc convergence factor. In the present appendix, some justification is given. For simplicity,
only one case is considered, the calculation of G−+(R, ϕ; r ′ = R − x ′, ϕ′).

From (3.5), (3.6), and the Wronskian relation,

G−+(R, ϕ; r ′, ϕ′) = 1

2π R

∞∑
l=0

Il(mr ′)
Il(m R)

exp[i(1 + l)ϕ − ilϕ′)]. (A.1)

Using the uniform asymptotic expansions of the Bessel functions [29], appropriate here since
the arguments mr ′ and m R are large but the index l may also be large, gives after some algebra

G−+(R, ϕ; r ′, ϕ′) ∼ eiϕ

2π R

∞∑
l=0

exp

[
−mx ′

(
1 +

l2

m2 R2

)1/2]
exp(ilθ) (A.2)

where θ = ϕ − ϕ′. We are interested in the m R → ∞ limit of (A.2), for a fixed value of mx ′
and θ 	= 0. For obtaining this limit, the Borel summation method is used. The sum in (A.2)
can be written as

S =
∫ ∞

0
dt exp(−t) f (t) (A.3)

where

f (t) =
∞∑

l=0

exp

[
−mx ′

(
1 +

l2

m2 R2

)1/2]
exp(ilθ)

t l

l!
. (A.4)

Since the sum (A.4) is absolutely convergent, the limit and the sum can be interchanged, giving

lim
m R→∞

f (t) = exp(−mx ′) exp(teiθ ). (A.5)

Using the limit (A.5) in (A.3) gives the large-m R behaviour

G−+(R, ϕ; R − x ′, ϕ′) ∼ e−mx′+iϕ

2π R

1

1 − eiθ
(A.6)

in agreement with (3.15).
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